Conformal Measures for Rational Functions
نویسندگان
چکیده
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism. 1 Introduction. In this paper we recall from U2] the notion of conical points and analyze
منابع مشابه
Conformal and Harmonic Measures on Laminations Associated with Rational Maps
The framework of aane and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an aane Riemann surface lamination A and the associated hyperbolic 3-lamination H endowed with an action of a discrete group of iso-morphisms. This action is properly discontinuous on H, which allows one to pass ...
متن کاملMeasures with positive Lyapunov exponent and conformal measures in rational dynamics
Ergodic properties of rational maps are studied, generalising the work of F. Ledrappier. A new construction allows for simpler proofs of stronger results. Very general conformal measures are considered. Equivalent conditions are given for an ergodic invariant probability measure with positive Lyapunov exponent to be absolutely continuous with respect to a general conformal measure. If they hold...
متن کاملConformal measures for rational functions revisited
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism. Introduction. In this paper we recall from [U2] the ...
متن کاملPolynomial Fermionic Forms for the Branching Functions of the Rational Coset Conformal Field Theories ŝu(2)M × ŝu(2)N/ŝu(2)M+N
General fermionic expressions for the branching functions of the rational coset conformal field theories ŝu(2)M × ŝu(2)N/ŝu(2)M+N are given. The equality of the bosonic and fermionic representations for the branching functions is proven by introducing polynomial truncations of these branching functions which are the configuration sums of the RSOS models in regime III. The path space interpretat...
متن کاملOptimization of Conformal Mapping Functions used in Developing Closed-Form Solutions for Underground Structures with Conventional cross Sections
Elastic solutions applicable to single underground openings usually suffer from geometry related simplification. Most tunnel shapes possess two axes of symmetry while a wide range of geometries used in tunneling practice involve only one symmetry axis. D-shape or horse-shoe shape tunnels and others with arched roof and floor are examples of the later category (one symmetry axis). In the present...
متن کامل